X Код для використання на сайті:
Ширина px

Скопіюйте цей код і вставте його на свій сайт

X Для завантаження презентації, скористайтесь соціальною кнопкою для рекомендації сервісу SvitPPT Завантажити собі цю презентацію

Презентація на тему:
прогресія

Завантажити презентацію

прогресія

Завантажити презентацію

Презентація по слайдам:

Слайд 1

1. Дайте означення арифметичної прогресії. Відповідь: Арифметичною прогресією називається числова послідовність, кожний член якої, начинаючи з другого, дорівнює попередньому, до якого додається одне й те ж число.

Слайд 2

2. Що називають різницею арифметичної прогресії? Як позначають? Відповідь: це число, яке показує на скільки кожний наступний член більший або менший попереднього. Позначають буквою d.

Слайд 3

3. Назвати формулу n-ого члена арифметичної прогресії.

Слайд 4

4. Які властивості арифметичної прогресії? Відповідь: Кожний член арифметичної прогресії, починаючи з другого дорівнює середньому арифметичному двох сусідніх з ним членів.

Слайд 5

4. Які властивості арифметичної прогресії? Відповідь: Сума будь-яких двох членів скінченної арифметичної прогресії, які рівновіддалені від її крайніх членів, дорівнює сумі крайніх членів цієї прогресії.

Слайд 6

6. Які бувають арифметичні прогресії? Відповідь: Якщо в арифметичній прогресії різниця d > 0, то прогресія є зростаючою. Якщо в арифметичній прогресії різниця d

Слайд 7

Які із послідовностей є арифметичними прогресіями? 3, 6, 9, 12,….. 5, 12, 18, 24, 30,….. 7, 14, 28, 35, 49,…. 5, 15, 25,….,95…. 1000, 1001, 1002, 1003,…. 1, 2, 4, 7, 9, 11….. 5, 4, 3, 2, 1, 0, -1, -2,…. d = 3 d = 10 d = 1 d = - 1

Слайд 8

Знайти різницю арифметичної прогресії: 1; 5; 9……… 105; 100…. -13; -15; -17…… 11; ; 19,….

Слайд 9

1. В арифметичній прогресії 2,4; 2,6;… різниця дорівнює 2. 2. Четвертий член арифметичної прогресії 0,3; 0,7; 1,1,… дорівнює 1,5 3. 11-ий член арифметичної прогресії, для якої дорівнює 0,2

Слайд 10

Між числами 6 і 21 вставте 4 числа так, щоб разом з даними числами вони утворили арифметичну прогресію. Розв’язання: = 6, = 21, d = (21 – 6)/ (6 – 1)= 3, 6, 9, 12, 15, 18, 21.

Слайд 11

Прогресії як часткові види числових послідовностей, трапляються у папірусах II тисячоліття до н.е. На зв’язок між прогресіями вперше звернув увагу великий АРХІМЕД ( 287–212 рр. до н.е)

Слайд 12

Найдавнішою задачею, пов’язаною з прогресіями, вважають задачу з єгипетського папірусу Ахмеса Райнда про поділ 100 мір хліба між п’ятьма людьми так, щоб другий одержав на стільки більше від першого, на скільки третій одержав більше другого і т. д . У V ст. до н. е. греки знали слідуючі прогресії і їх суми:

Слайд 13

Правило для знаходження суми членів арифметичної прогресії дається у «Книзі абака» (1202 р.) італійського вченого-математика Леонардо Фібоначчі. Правило для суми скінченної геометричної прогресії зустрічається у книзі Н. Шюке «Наука про числа», яка побачила світ у 1484 році. Наука про числа

Слайд 14

В англійських підручниках з’явилось позначення арифметичної і геометричної прогресій:

Слайд 15

Карл Гаус ( 1777 – 1855 ) Німецький математик, астроном, геодезист, фізик, вважається «королем математики». «Математика – цариця всіх наук, арифметика – цариця математики» Народився 30 квітня 1777 року в герцогстві Брауншвейг у сім’ї садівника. Видатні математичні здібності проявив вже у ранньому дитинстві.

Слайд 16

Знайшов моментально суму всіх натуральних чисел від 1 до 100, будучи ще учнем початкової школи. Розв’язання 1 + 2 + 3 + 4 + ….. + 99 + 100 = (1 + 100) + (2 + 99) + (3 + 98) + ….. = 101 ∙ 50 = 5050

Слайд 17

Формула суми n перших членів арифметичної прогресії.

Завантажити презентацію

Презентації по предмету Математика