X Код для використання на сайті:
Ширина px

Скопіюйте цей код і вставте його на свій сайт

X Для завантаження презентації, скористайтесь соціальною кнопкою для рекомендації сервісу SvitPPT Завантажити собі цю презентацію

Презентація на тему:
Інтегральне числення

Завантажити презентацію

Інтегральне числення

Завантажити презентацію

Презентація по слайдам:

Слайд 1

* Інтегральне числення.

Слайд 2

* Невизначений інтеграл. Властивості невизначеного інтеграла. Визначений інтеграл. Формула Ньютона - Лейбніца. Властивості визначеного інтеграла.

Слайд 3

* Невизначений інтеграл, його властивості і обчислення Означення. Функція F(x) називається первісною функції f(x) на деякому проміжку, якщо для кожного х з цього проміжку Наприклад функція cosx являється первісною для функції – sinx, тому що

Слайд 4

* Первісна та невизначений інтеграл Очевидно, якщо F(x) – первісна функції f(x), то , де С –деяка постійна, також являється первісною для функції f(x). Якщо F(x) є будь – яка первісна для функції f(x), то всяка функція виду Ф(х)= також являється первісною для функції f(x)

Слайд 5

* Первісна та невизначений інтеграл Означення. Сукупність всіх первісних функції f(x),визначених на деякому проміжку, називається невизначеним інтегралом від функції f(x) на цьому проміжку і позначається

Слайд 6

* Первісна та невизначений інтеграл Якщо F(x) – деяка первісна для функції f(x), то пишуть = , хоча логічніше писати = . Ми по існуючих правилах будемо писати = . Таким чином один і той же символ буде визначати як всю сукупність первісних функції f(x), так і будь – який елемент цієї множини

Слайд 7

* Властивості інтеграла, котрі випливають з означення Первісна невизначеного інтегралу рівна підінтегральній функції, а його диференціал – його підінтегральному виразу. Тобто:

Слайд 8

* Властивості інтеграла, котрі випливають з означення Невизначений інтеграл від неперервно диференційованої функції дорівнює самій цій функції з точністю до постійної. Так як являється первісною для

Слайд 9

* Властивості інтегралу

Слайд 10

* Таблиця невизначених інтегралів

Слайд 11

* Таблиця невизначених інтегралів

Слайд 12

* Методи інтегрування Метод інтегрування заміни змінної. Метод інтегрування по частинах. Метод безпосереднього інтегрування

Слайд 13

* Метод інтегрування заміни змінної. Нехай потрібно знайти , причому безпосередньо підібрати первісну для ми не можемо, але нам відомо, що вона існує. Часто вдається найти первісну, ввівши нову змінну, по формулі: де , а - нова змінна

Слайд 14

* Метод інтегрування по частинах. Цей метод заснований на формулі:

Слайд 15

* Метод безпосереднього інтегрування Приклад. Обчислити

Слайд 16

* Визначений інтеграл. Означення. Вираз , де , називається інтегральною сумою функції на відрізку

Слайд 17

* Визначений інтеграл. Означення. Якщо існує , яка не залежить ні від способу розбиття відрізку на частини, ні від вибору точок , то така границя називається визначеним інтегралом функції на відрізку і позначається

Слайд 18

* Властивості визначеного інтегралу

Слайд 19

* Властивості визначеного інтегралу

Слайд 20

* Обчислення визначеного інтегралу Теорема. Нехай - первісна функції Тоді Цю формулу називають формулою Ньютона – Лейбніца, з якої випливає, що для обчислення визначеного інтегралу необхідно знайти первісну від підінтегральної функції.

Слайд 21

*

Завантажити презентацію

Презентації по предмету Математика