X Код для використання на сайті:
Ширина px

Скопіюйте цей код і вставте його на свій сайт

X Для завантаження презентації, скористайтесь соціальною кнопкою для рекомендації сервісу SvitPPT Завантажити собі цю презентацію

Презентація на тему:
Будова та функції клітинних мембран

Завантажити презентацію

Будова та функції клітинних мембран

Завантажити презентацію

Презентація по слайдам:

Слайд 1

Будова та функції клітинних мембран

Слайд 2

Клітина — структурно-функціональна одиниця всіх живих організмів, для якої характерний власний метаболізм та здатність до самовідтворення. Від середовища, яке її оточує, клітина відмежована плазматичною мембраною. Розрізняють два типи клітин: прокаріотичні, що не мають сформованого ядра, характерні для бактерій та архей, та еукаріотичні, в яких наявне ядро, властиві для всіх інших клітинних форм життя, зокрема рослин, грибів та тварин. До неклітинних форм життя належать лише віруси, але вони не мають власного метаболізму і не можуть розмножуватись поза межами клітин-живителів. Клітина Усі організми поділяються на одноклітинні, колоніальні та багатоклітинні. До одноклітинних належать бактерії, археї, деякі водорості і гриби, а також найпростіші. Колоніальні та багатоклітинні організми складаються з великої кількості клітин. Різниця між ними полягає в тому, що колоніальні організми складаються з недиференційованих або слабо диференційованих клітин, які можуть виживати одна без одної. Клітини багатоклітинних організмів більш-менш спеціалізовані на виконанні певних функцій і залежні одна від одної в процесах життєдіяльності. До багатоклітинних організмів належить зокрема і людина, тіло якої складається приблизно з 1013 клітин. Клітини крові людини

Слайд 3

Вперше клітини вдалось побачити тільки після створення світлових мікроскопів, з того часу і досі мікроскопія залишається одним із найважливіших методів дослідження клітин. Використовується світлова (оптична) мікроскопія, що попри свою порівняно невелику роздільну здатність має ту перевагу, що дозволяє спостерігати за живими клітинами. У ХХ столітті була винайдена електронна мікроскопія, що дала можливість вивчити ультраструктуру клітин. Для вивчення функцій клітин та їх частин використовують різноманітні біохімічні методи як препаративні, наприклад фракціонування методом диференційного центрифугування, так і аналітичні. Для експериментальних та практичних цілей використовують методи клітинної інженерії. Всі згадані методичні підходи можуть використовуватись у поєднанні із методами культури клітин. Методи дослідження клітин Флуоресцентна мікроскопія Темнопольна мікроскопія Світлопольна мікроскопія

Слайд 4

Будову біологічних мембран описує рідинно-мозаїчна модель, яку в 1972 році запропонували Сінгер і Ніколсон. Згідно з нею мембрани складаються із «двовимірної рідини» — подвійного шару ліпідів, в якій «плавають» молекули білків, утворюючи мінливу мозаїку. Ліпідний бішар біологічних мембран має товщину 5 нм і в основному побудований із фосфоліпідів, у молекулах яких виділяють дві основні частини: гідрофільну «голову» та два гідрофобні «хвости». У складі бішару гідрофільні голови фосфоліпідів повернуті назовні — у полярний водний розчин, а гідрофобні хвости — всередину. До складу мембран у меншій кількості входять також інші ліпіди, такі як гліколіпіди, сфінголіпіди та холестерол. Будова біологічних мембран Вміст білків у мембранах може коливатись від 18% до 75%. Частина із мембранних білків міцно зв'язана із ліпідним бішаром завдяки наявності гідрофобних доменів, які входять в нього. Такі білки називаються інтегральними, а ті із них, що наскрізь пронизують мембрану — трансмембранними; до цього класу належать усі іонні канали та більшість клітинних рецепторів. Натомість периферійні білки не вбудовуються у ліпідний бішар, а утримуються поблизу мембрани завдяки слабким взаємодіям із іншими білками або гідрофільними головами фосфоліпідів. Прикладом цієї групи білків можуть бути деякі ферменти. Зовнішній і внутрішній листки мембрани відрізняються фосфоліпідним і білковим складом та функціями.

Слайд 5

1.Обмеження вмісту клітини. Мембрани характеризуються вибірковою проникністю: через них можуть проходити неполярні речовини, але не великі полярні та заряджені молекули. Маленькі полярні молекули, такі як вода, здатні перетинати ліпідний бішар, але цей процес ускладнено. Завдяки таким властивостям мембрана утримує всередині клітини всі біополімери та заряджені молекули, а також запобігає потраплянню таких молекул іззовні. 2.Транспорт. Мембрани регулюють процес транспорту потрібних речовин до клітини та виведення із неї відходів. Якщо речовини переносяться через мембрану за градієнтом концентрації, для цього не витрачається енергія, і такий транспорт називається пасивним. Різновидами пасивного транспорту є проста і полегшена дифузія. У випадку першої речовини проникають безпосередньо через біліпідний шар, окремий випадок — проста дифузія води або осмос. Шляхом полегшеної дифузії переносяться сполуки, які не можуть перетинати бішар ліпідів, для них у мембрані є спеціальні білкові канали або білки-переносники. Існування живих клітин було б неможливим без здатності до активного транспорту, тобто перенесення речовини проти градієнту концентрації. Активний транспорт є енерговитратним процесом. Великі часточки або краплини рідини можуть переноситись у клітину або викидатись із неї назовні шляхом ендо- або екзоцитозу відповідно за допомогою мембранних везикул , цей процес також потребує енергетичних затрат. Функції мембран

Слайд 6

3.Рецепція. На поверхні плазматичної мембрани розташована велика кількість клітинних рецепторів що сприймають різні хімічні та фізичні сигнали та передають їх всередину клітини. Завдяки рецепторній функції мембран клітини організму можуть спілкуватись між собою, а також розпізнавати поверхневі білки одна одної. 4.Метаболічна функція. Багато мембранних білків є ферментами. Інколи вони можуть бути організовані у мультиферментні комплекси для здійснення послідовних метаболічних реакцій, при цьому мембрана виступає каркасом для їх просторової організації. Реакції світлової фази фотосинтезу та електронтранспортного ланцюга мітохондрій можуть відбуватись тільки на відповідних мембранах. 5.Клітинна адгезія. Мембрани тварин, зокрема деякі мембранні білки, забезпечують прикріплення клітин багатоклітинного організму одна до одної або до позаклітинного матриксу. Таким чином забезпечується структурна цілісність тканин тваринного організму. Контакт із мікрооточенням за участі мембранних білків також є важливим для виживання багатьох типів клітин, без нього вони гинуть шляхом апоптозу.

Слайд 7

Цитоплазма клітини складається із водянистої основної речовини — гіалоплазми, у якій розташовані органели, нитки цитоскелету та клітинні включення. Цитоплазма клітини Гіалоплазма або основна речовина цитоплазми приблизно на 90% складається з води, в якій розчинені всі основні біомолекули: солі, цукор, амінокислоти, нуклеотиди, вітаміни і гази утворюють істинний розчин, тоді як великі молекули, зокрема білки, перебувають у колоїдному розчині. У гіалоплазмі відбувається велика кількість метаболічних процесів, зокрема гліколіз. Спостерігаючи за живою цитоплазмою клітини, зазвичай можна помітити, що вона рухається. Найкраще видно рух мітохондрій і пластид. Це явище називають циклозом.

Слайд 8

Рибосоми — дрібні органели , не оточені мембраною. Відповідають за здійснення трансляції — синтезу поліпептидного ланцюга на матриці мРНК. Рибосома побудована із двох субодиниць — великої і малої, до складу кожної входить приблизно однакова за масою кількість білків та рРНК. Існує два основних типи рибосом — менші, наявні у прокаріотичних клітинах, мітохондріях і пластидах, і дещо більші цитоплазми еукаріот. Рибосоми В еукаріотичних клітинах виділяють дві основні популяції рибосом: вільні і пов'язані з ендоплазматичним ретикулумом (ЕПР). Ці дві групи не відрізняються структурою, а лише синтезованими білками: вільні рибосоми синтезують цитоплазматичні білки, тоді як на шЕПР відбувається утворення мембранних і секреторних білків. Часто кілька рибосом рухаються одна за одною вздовж одного ланцюга мРНК, синтезуючи поліпептидні ланцюги; такі об'єднання рибосом називають полірибосомами або полісомами.

Слайд 9

Мітохондрії Мітохондрії або певні їхні видозміни наявні в клітинах усіх еукаріот. Кількість мітохондрій у клітині коливається від однієї, до кількох сотень або навіть тисяч. Загальний об'єм мітохондрій у клітині корелює із її метаболічною активністю. Основною функцією цих органел є здійснення аеробного етапу клітинного дихання: тут відбувається цикл трикарбонових кислот, реакції електронтранспортного ланцюга та окисне фосфорилювання АДФ, що має своїм наслідком утворення АТФ. Таким чином мітохондрії є головними енергетичними станціями клітини. Окрім цього вони є одним із ключових місць теплопродукції клітини, а також місцем накопичення кальцію. Мітохондрії на електронних мікрофотографіях зазвичай виглядають як продовгуваті циліндри. Проте в живих клітинах це динамічні структури, які постійно змінюють свою форму, можуть зливатись між собою, ділитись і рухатися в цитоплазмі. Мітохондрії оточено двома мембранами, що відрізняються за своїм складом і функціями, вони поділяють мітохондрію на два компартменти: міжмембранний простір та матрикс — внутрішній простір. Проникність зовнішньої мембрани значно більша ніж внутрішньої, тому рідина, що заповнює міжмембранний простір, за складом більше схожа на цитоплазму, ніж матрикс.

Слайд 10

Внутрішня мембрана мітохондрій містить велику кількість вбудованих транспортних білків, елементів електротранспортного ланцюга, деякі ферменти циклу трикарбонових кислот, а також так звані «грибоподібні утвори» — тобто молекули АТФ-синтази, що здійснюють окисне форсфорилювання. Через свої важливі метаболічні функції внутрішня мембрана мітохондрій повинна мати велику площу, тому вона утворює численні випинання, які називають кристами. Мітохондрії до певної міри є автономними органелами: вони мають власну ДНК, білок-синтезуючий апарат, а також здатні до автономного розмноження. Якщо клітину позбавити мітохондрій, вона не зможе їх відновити. Всі ці особливості є підтвердженням ендосимбіотичної гіпотези, згідно з якою мітохондрії утворилися з симбіотичних бактерій, що жили в клітинах перших еукаріот. Мітохондрії із клітин легень

Слайд 11

Хлоропласти мають довгасту форму і розмір приблизно 2—5 мкм. Вони оточені двома мембранами, розділеними вузенькою смужкою міжмембранного простору. Внутрішній простір хлоропласта називається стромою. У ньому розташована мембранна система, що складається із маленьких сплощених мішечків — тилакоїдів, мембрани яких містять молекули зеленого фотосинтетичного пігменту хлорофілу. Тилакоїди згруповані у стопки, що називаються гранами. Грани сполучаються між собою ламелами — довгими пластинками і трубочками. Таким чином, хлоропласт поділений на три компартменти: міжмембранний простір, строму, в якій відбувається темнова фаза фотосинтезу, і внутрішній простір тилакоїдів, де протікає світлова фаза фотосинтезу. Хлоропласти

Слайд 12

Клітинна стінка — це надмембранна структура клітин рослин, грибів, проте її немає у тварин. Клітинна стінка потрібна для підтримання форми, захисту клітини та запобігання надмірного надходження до неї води. У грибів клітинна стінка складається в основному з хітину, а в рослин — із фібрил целюлози та геміцелюлоз, занурених у матрикс із пектинів. Клітинна стінка Молода рослинна клітина утворює тонку гнучку первинну клітинну стінку . Між клітинними стінками двох сусідніх клітин розміщується серединна пластинка, що складається в основному із пектинів, які «склеюють» клітини між собою. Після того як рослинна клітина перестає рости, вона укріплює свою клітинну стінку, відкладаючи додаткові шари целюлози. У певних тканинах клітини утворюють досить товсту вторинну клітинну стінку, що може складатись з інших речовин — наприклад лігніну в деревині.

Слайд 13

Достеменно невідомо, коли на Землі з'явилась перша клітина і яким шляхом вона виникла. Найбільш ранні ймовірні викопні мікрорештки клітин, приблизний вік яких оцінено у 3,49 млрд років, знайдено на сході Пілбари (Австралія), хоча біогенність їх походження було поставлено під сумнів. Про існування життя в ранньому археї свідчать також строматоліти того ж періоду. Виникненню перших клітин повинно було передувати накопичення органічних речовин у середовищі та поява певної форми пребіотичного метаболізму. Протоклітини містили як мінімум два обов'язкові елементи: спадкову інформацію у вигляді молекул, здатних до самореплікації, та певного роду оболонки, що відмежовували внутрішній вміст перших клітин від навколишнього середовища. Найімовірнішим кандидатом на роль самореплікативних молекул є РНК, оскільки вона може одночасно виступати і носієм спадкової інформації, і каталізатором; крім того РНК, на відміну від ДНК, самодостатні для здійснення біосинтезу білків. Невідомо також з яких речовин були побудовані мембрани перших клітин, проте цілком ймовірно, це могли були прості амфіфільні сполуки, такі як солі жирних кислот, здатні самоорганізовуватись у ліпосоми, що можуть проходити цикли росту та поділу. Жирні кислоти було синтезовано у багатьох експериментах із відтворення пребіотичних умов, також їх було знайдено у метеоритах. Вважається, що перші живі клітини були гетеротрофними. Еволюція клітин

Слайд 14

Дякую за увагу

Завантажити презентацію

Презентації по предмету Біологія