X Код для використання на сайті:
Ширина px

Скопіюйте цей код і вставте його на свій сайт

X Для завантаження презентації, скористайтесь соціальною кнопкою для рекомендації сервісу SvitPPT Завантажити собі цю презентацію

Презентація на тему:
"Вимірювання елементарного електричного заряду"

Завантажити презентацію

"Вимірювання елементарного електричного заряду"

Завантажити презентацію

Презентація по слайдам:

Слайд 1

Вимірювання елементарного електричного заряду Мельникова Катя Гринчишин Маріанна 11-А

Слайд 2

План Введення. Передісторія відкриття електрона Історія відкриття електрона Досліди та методи відкриття електрона: Дослід Томсона Дослід Резерфорда Метод Міллікена: - Коротка біографія - Опис установки - Обчислення елементарногозаряду Висновки з методу Метод візуалізації Комптона Висновок.

Слайд 3

Загальні Відомості про Електрон ЕЛЕКТРОН -перша за часом відкриття елементарна частинка; Матеріальний носій найменшої маси і найменшого електричного заряду в природі; складова частина атома. Заряд електрона - 1,6021892 . 10 -19 Кл Маса електрона 9,109534 . 10 -31 кг Питома заряду e/m e =1,7588047 . 10 11 Кл . кг -1 Еелектрони підкоряються статистиці Фермі-Дірака, ферміони. На них діє принцип заборони Паулі. Магнітний момент електрона дорівнює - 1,00116 m б , де m б – магнетон Бору. Електронстабільна частинка. Згідно з експериментальними даними, час життя t e > 2 . 10 22 років. Не бере участь у сильній взаємодії. Сучасна фізика розглядає електрон як істинно елементарну частинку, яка не володіє структурою і розмірами.

Слайд 4

Предісторія відкриття Відкриття електрона являється результатом численних експериментів. До початку XX століття відкриття існування електрона було встановлено цілий ряд незалежних експериментів. Але, незважаючи на колосальний експериментальний матеріал,накопичений цілими національними школами, електрон залишався гіпотетичною частинкою, бо досвід ще не відповів на ряд фундаментальних питань. В дійсності "відкриття" електрона розтяглося більш ніж на півстоліття і не завершилося в 1897 році, в ньому брало участь безліч вчених і винахідників. Перш за все не було жодного досліду, в якому були б задіяні окремі електрони. Елементарний заряд обчислювався на підставі вимірів мікроскопічного заряду в припущенні справедливості ряду гіпотез. Спочатку електрон з'явився як результат атомістичного тлумачення законів електролізу, потім він був виявлений в газовому розряді. Було не ясно, чи має фізика в дійсності справу з одним і тим же об'єктом. Жоден з дослідів по вимірюванню заряду електрона не давав суворо повторюваних значень.  Були скептики, які взагалі ігнорували відкриття електрона. Академік А.Ф.Іоффе в спогадах про свого вчителя В.К. Рентгені писав: « До 1906 - 1907 рр. слово електрон не повинно було вимовлятися у фізичному інституті Мюнхенського університету. Рентген вважав його недоведеною гіпотезою, застосовуваної часто без достатніх підстав і без потреби ». Поняття « електрон » не мало однозначного тлумачення, бо експеримент не розкрив ще структури атома (планетарна модель Резерфорда з'явиться в 1911 р., а теорія Бора - в 1913р.). Електрон ще не вийшов з рамок « чистої » науки. Нагадаємо, що перша електронна лампа з'явилася тільки в 1907 р. Для переходу від віри до переконання необхідно було перш за все ізолювати електрон, винайти метод безпосереднього і точного вимірювання елементарного заряду.

Слайд 5

Вирішення цього завдання не змусило себе чекати. У 1752 р була вперше висловлена думка про дискретності електричного заряду Б. Франкліном. Експериментально дискретність зарядів була обґрунтована законами електролізу, відкритими М.Фарадеєм в 1834 р. Числове значення елементарного заряду (найменшого електричного заряду, що зустрічається в природі) було теоретично обчислено на підставі законів електролізу з використанням числа Авогадро. Прямий експериментальний вимір елементарного заряду було виконано Р. Міллікеном вкласичних дослідах, виконаних в 1908 - 1916 рр. Ці досліди дали також неспростовний доказ атомізму електрики. Згідно з основними уявленням електронної теорії заряд якого тіла виникає в результаті зміни міститься в ньому кількості електронів (або позитивних іонів,величина заряду яких кратна заряду електрона). Тому заряд будь-якого тіла повинен змінюватися стрибкоподібно і такими порціями, які містять ціле число зарядів електрона. Встановивши на досвіді дискретний характер зміни електричного заряду, Р. Міллікен зміг отримати підтвердження існування електронів і визначити величину заряду одного електрона (елементарний заряд) використовуючи метод масляних крапель. В основу методу покладено вивчення руху заряджених крапельок масла в однорідному електричному полі відомої напруженості Е.

Слайд 6

Відкриття електрона : Якщо відволіктися від того, що передувало відкриттю першої елементарної частки - електрона, і від того, що супроводжувало цієї визначної події, можна сказати коротко: в 1897 році відомий англійський фізик Томсон Джозеф Джон(1856-1940 рр.) Виміряв питому заряду q/m катодно-променевих частинок - "корпускул",як він їх назвав, по відхиленню катодних променів *) в електричному та магнітному полях . З зіставлення отриманого числа з відомим на той час питомим зарядом одновалентного іона водню, шляхом непрямих міркувань він прийшов до висновку,що маса цих часток, які отримали пізніше назву "електрони",значно менша (більш ніж у тисячу разів) маси самого легкого іона водню. У тому ж,1897 році він висунув гіпотезу, що електрони є складовою частиною атомів,а катодні промені - не атоми чи не електромагнітне випромінювання, як вважали деякі дослідники властивостей променів. Томсон писав: "Таким чином,катодні промені являють собою новий стан речовини, істотно відмінне від звичайного газоподібного стану ...; в цьому новому стані матерія являє собою речовину, з якої побудовані всі елементи ". З 1897 року корпускулярна модель катодних променів стала завойовувати загальне визнання, хоча про природу електрики були найрізноманітніші судження. Так, німецький фізик Е.Віхерт вважав, що "електрика є щось уявне, існуюче реально тільки в думках ", а відомий англійський фізик лорд Кельвін у тому ж, 1897 році писав про електрику як про якусь "без перервної рідини ". 29 квітня1897 Томсон зробив своє знамените повідомлення на засіданні Лондонського королівського товариства. Ця подія стала підсумком багаторічної роботи Томсона і його співробітників. Ні Томсон, ні будь-хто інший ніколи не спостерігали електрон в буквальному сенсі, нікому не вдалося виділити окрему частинку з пучка катодних променів і виміряти її питома заряд. Автором відкриття є Дж. Дж. Томсона тому, що його уявлення про електрон були близькі до сучасним. У 1903 році він запропонував одну з перших моделей атома -"Пудинг з родзинками", а в 1904 припустив, що електрони в атомі розділяються на групи, утворюючи різні конфігурації, що обумовлюють періодичність хімічних елементів. Місце відкриття точно відомо - Кавендішської лабораторії (Кембрідж, Великобританія). Створена в 1870 році Дж. К. Максвелла, в наступні сто років вона стала"Колискою" цілого ланцюга блискучих відкриттів у різних галузях фізики, особливо в атомній і ядерній

Слайд 7

Методи відкриття електрона: Дослід Томсона Дослід Резерфорда Метод Міллікена

Слайд 8

Дослід Томсона Англійський фізик, більш відомий просто як Дж. Дж. Томсон. Лауреат Нобелівської премії з фізики 1906 року з формулюванням «за дослідження проходження електрики через гази », яка, природно, включає і відкриття електрона. В1897 молодий англійський фізик Дж. Дж. Томсон прославився в століттях як першовідкривач електрона. У своєму досвіді Томсон використовував вдосконалену катодно-променеву трубку, конструкція якої була доповнена електричними котушками, створившими (згідно закону Ампера) усередині трубки магнітне поле, і набором паралельних електричних конденсаторних пластин,створювали усередині трубки електричне поле. Завдяки цьому з'явилася можливість досліджувати поведінку катодних променів під впливом і магнітного,і електричного поля. Використовуючи трубку нової конструкції, Томсон послідовно показав, що:катодні промені відхиляються в магнітному полі в відсутність електричного; катодні промені відхиляються в електричному полі в відсутність магнітного; та при одночасній дії електричного та магнітного полів збалансованої інтенсивності, орієнтованих в напрямках, що викликають окремо відхилення в протилежні сторони,катодні промені поширюються прямолінійно, тобто дія двох полів взаємно врівноважується.

Слайд 9

Томсон з'ясував, що співвідношення між електричним і магнітним полями, при якому їх дія врівноважується, залежить від швидкості, з якою рухаються частинки. Провівши ряд вимірювань, Томсон зміг визначити швидкість руху катодних променів. Виявилося, що вони рухаються значно повільніше швидкості світла, з чого випливало, що катодні промені можуть бути тільки частинками, оскільки будь-яке електромагнітне випромінювання, включаючи сам світ, поширюється зі швидкістю світла (див. Спектр електромагнітного випромінювання). Ці невідомі частинки. Томсон назвав «корпускулами», але незабаром вони стали називатися «електронами». Відразу ж стало ясно, що електрони зобов'язані існувати в складі атомів - інакше,звідки б вони взялися Описані вище «катодні», а точніше, електронно-променеві трубки стали найпростішими попередницями сучасних телевізійних кінескопів і комп'ютерних моніторів, в яких суворо контрольовані кількості електронів вибиваються з поверхні розжареного катода, під впливом змінних магнітних полів відхиляються під строго заданими кутами і бомбардують фосфоресціюючи осередку екранів, утворюючи на них чітке зображення, що виникає в результаті фотоелектричного ефекту, відкриття якого також було б неможливим без нашого знання істинної природи катодних променів.

Слайд 10

Дослід Резерфорда Новозеландський фізик. Ернест Резерфорд - унікальний учений в тому плані, що свої головні відкриття він зробив вже після отримання Нобелівської премії. У 1911 році йому вдався експеримент,який не тільки дозволив вченим заглянути вглиб атома і отримати уявлення про його будову, але й став зразком витонченості й глибини задуму. Використовуючи природне джерело радіоактивного випромінювання, Резерфорд побудував гармату, яка давала спрямований і сфокусований потік частинок. Гармата являла собою свинцевий ящик з вузьким прорізом, всередину якого було поміщено радіоактивний матеріал. Завдяки цьому частинки (в даному випадку альфа-частинки, що складаються з двох протонів і двох нейтронів), що випускаються радіоактивною речовиною у всіх напрямках, крім одного, поглиналися свинцевим екраном, і лише через проріз вилітав направлений пучок альфа-частинок. Далі на шляху пучка стояло ще кілька свинцевих екранів з вузькими прорізами, відсікати частинки, що відхиляються від строго заданого напрямки. У результаті до мішені підлітав ідеально сфокусований пучок альфа-частинок, а сама мішень представляла собою найтонший лист золотої фольги. У неї-то і вдаряв альфа-промінь. Після зіткнення з атомами фольги альфа-частинки продовжували свій шлях і потрапляли на люмінесцентний екран, встановлений позаду мішені, на якому при попаданні нанього альфа-частинок реєструвалися спалахи. За ним експериментатор міг судити, в якій кількості і наскільки альфа-частинки відхиляються від напрямку прямолінійного руху в результаті зіткнень з атомами фольги.

Слайд 11

Резерфорд,однак, зауважив, що ніхто з його попередників навіть не пробував перевірити експериментально, не відхиляються чи деякі альфа-частинки під дуже великими кутами. Модель сітки з родзинками просто не допускала існування в атомі настільки щільних і важких елементів структури, що вони могли бвідхиляти швидкі альфа-частинки на значні кути, тому ніхто й не переймалися тим, щоб перевірити таку можливість. Резерфорд попросив одного зі своїх студентів переобладнати установку таким чином, щоб можна було спостерігати розсіювання альфа-частинок під великими кутами відхилення, - просто для очищення совісті, щоб остаточно виключити таку можливість. В якості детектора використовувався екран з покриттям із сульфід у натрію - матеріалу, що дає флуоресцентну спалах при попаданні в нього альфа-частинки. Яке ж було здивування не тільки студента,безпосередньо проводив експеримент, але і самого Резерфорда, коли з'ясувалося, що деякі частинки відхиляються на кути аж до 180 В°! Картина атома, намальована Резерфордом за результатами досвіду, нам сьогодні добре знайома. Атом складається з надщільного, компактного ядра, що несе на собі позитивний заряд, і від'ємно заряджених легких електронів навколо нього.

Слайд 12

Метод Міллікена Щоб збільшити точність вимірів, потрібно було передусім знайти метод обліку випаровування хмари, що неминуче відбувався за процесі виміру. Розмірковуючи над цією проблемою,Милликен і отримав класичному методу крапель, відкрившему низку несподіваних можливостей. Історію винаходи надамо розповісти самому автору: «Усвідомлюючи, швидкість випаровування крапель залишалася невідомої, спробував придумати спосіб, який цілком виключив цю невизначену величину. Мій план перебував у наступному. У попередніх дослідах електричне полі міг тільки трохи збільшити або зменшити швидкість падіння верхівки хмари під впливом сили тяжкості. І ось самим я хотів це полі посилити настільки, щоб верхня поверхню хмари залишалася на постійної висоті. І тут стала можливість із точністю визначити швидкість випаровування хмари й залучити її у розрахунок при обчисленнях». Задля реалізації цієї ідеї Милликен сконструював невелику за габаритами акумуляторну батарею, яка давала напруга до 104 У (на той час це були видатним досягненням експериментатора). Вона була створювати полі, досить сильний, щоб хмару утримувалася, як «труну Магомета», в підвішеному стані. «Коли в мене всі був готовий,— розповідаєМилликен, і коли утворилося хмару, я повернув вимикач, і хмару виявилося у електричному полі. І мить воно на очах розтануло, інакше кажучи, цілої хмари не залишилося маленького шматочка, який можна б спостерігати з допомогою контрольного оптичного приладу, як це робив Вільсон і збирався робити я. Як мені спочатку здалося, безслідне зникнення хмари в електричному полі між верхньої та нижньої платівками означало, що закінчився безрезультатно...» Проте, як це нерідко бував історії науки, невдача породила нову ідею. Вона ж призвела до знаменитому методу крапель. «Повторні досліди,— пишеМилликен,— показали, що незабаром після розсіювання хмари в потужному електричному поле, на його місце можна було розрізнити кілька окремих водяних крапель» (підкреслення моє.— У. Д.). «Невдалий» досвід призвів до відкриттю можливості утримувати рівновазі і спостерігати окремі крапельки протягом досить багато часу.

Слайд 13

Але під час спостереження маса краплі води суттєво змінилася внаслідок випаровування, іМилликен після багатоденних пошуків перейшов до збагачення з краплями олії. Процедура експерименту виявилася простий.Адиабатическим розширенням між пластинами конденсатора утворюється хмару. Вона складається з крапельок, які мають різні по модулю і знаку заряди. При включенні електричного поля краплі, мають заряди, однойменні з зарядом верхньої пластини конденсатора, швидко падають, а краплі з протилежним зарядом притягуються верхньої пластиною. Але певна кількість крапель має тої заряд, що гравітація врівноважується електричної силою. Через 7 чи 8 хв. хмару розсіюється, й у зору залишається мало крапель, заряд яких відповідає зазначеному рівноваги сил. >Милликен спостерігав ці краплі якотчетливих яскравих точок. «Історія цих крапель протікає зазвичай так,— пише він.— Що стосується невеликого переважання сили тяжкості над силою поля вони починають повільно падати, але, оскільки вони поступово випаровуються, їх спадне рух невдовзі припиняється, і на досить довго стають нерухомими. Потім полі починає виявляти перевагу, й краплини починають повільно підніматися. Насамкінець їхнього життя у просторі між пластинами це висхідний рух стає дуже сильно прискореним, і вони притягуються із швидкістю до верхньої пластині».