"Мікроелектроніка"
Завантажити презентаціюПрезентація по слайдам:
На сьогодні світ неможливо уявити без сучасних технологій. Саме мікроелектроніка є непорушним фундаментом для багатьох галузей промисловості. Актуальність:
Прослідкувати історію розвитку мікроелектроніки. З’ясувати, наскільки тісно мікроелектроніка пов’язана з фізикою та сучасним життям людини. Мета: Предмет дослідження: Мікроелектроніка в усіх її проявах.
Проаналізувати етапи розвитку мікроелектроніки; Показати мікроелектроніку в усіх її проявах; З’ясувати взаємозв’язок мікроелектроніки з сучаними технологіями. Завдання:
Мікроелектроніка — галузь сучасної промисловості, виробництво кремнієвих кристалів інтегральних мікросхем. Мікроелектроніка — це непорушний фундамент не тільки всієї сучасної індустрії інформаційних і комп'ютерних технологій, але і дуже багатьох суміжних галузей — побутової електроніки, індустрії розваг (включаючи музику і відео), медицини, військової і автомобільної промисловості тощо.
У 1962 році уряд колишнього Радянського Союзу прийняв постанову про розвиток мікроелектронної промисловості та створення у Зеленограді під Москвою Наукового центру мікроелектроніки з філіями у Києві, Мінську, Ризі, Вільнюсі, Тбілісі й ряді інших міст. Історія розвитку:
З ініціативи і за допомогою Олександра Івановича Шокіна в Києві на початку 1962 р. відкрилася виставка засобів мікроелектроніки, які випускалися підприємствами Комітету. Шокін Олександр Іванович
Півроку потому, коли з'явилася урядова постанова про розвиток мікроелектронної промисловості, було створене Київське конструкторське бюро з мікроелектроніки КБ-3 Державного комітету РМ СРСР з електронної техніки.
Олег Костянтинович Антонов За пропозицією Олега Костянтиновича Антонова - головного конструктора Київського авіазаводу - були проведені спільні роботи з визначення оптимальних шляхів мікромініатюризації бортової літакової апаратури для керування польотом.
У 1970 р. було створено перший у колишньому СРСР і Європі мікрокалькулятор на 4-х великих інтегральних схемах МОП-ВІС із ступенем інтеграції до 500 транзисторів на кристалі.
Види мікроелектроніки: Функціональна мікроелектроніка. Функціональна мікроелектроніка пропонує принципово новий підхід, що дозволяє реалізувати певну функцію апаратури без застосування стандартних базових елементів, грунтуючись безпосередньо на фізичних явищах в твердому тілі.
Оптоелектроніка. Істотна особливість оптоелектронних пристроїв полягає в тому, що елементи в них оптично зв'язані, але електрично ізольовані один від одного. Завдяки цьому легко забезпечується узгодження високовольтних і низьковольтних, а також високочастотних ланцюгів.
Магнетоелектроніка. Магнетоелектроніка – напрям функціональної мікроелектроніки, пов'язаний з появою нових магнітних матеріалів, що мають малу намагніченість насичення і з розробленням технологічних методів отримання тонких магнітних плівок.
Акустоелектроніка. Акустоелектроніка – напрям функціональної мікроелектроніки, зв'язаний з використанням механічних резонансних ефектів, п'єзоелектричного ефекту, а також ефекту, заснованого на взаємодії електричних полів з хвилями акустичних напруг в п'єзоелектричному напівпровідниковому матеріалі. Акустоелектроніка займається перетворенням акустичних сигналів в електричні і електричних сигналів в акустичні.
Хемотроніка. Хемотроніка як новий науковий напрям виник на стику двох напрямів, що розвиваються: електрохімії і електроніки. Перспектива розвитку хемотроніки – це створення інформаційних систем і систем керування на рідинній основі, а в майбутньому – біоперетворювачів інформації
Кріоелектроніка. Кріоелектроніка – напрям електроніки і мікроелектроніки охоплюючий дослідження взаємодії електромагнітного поля з електронами в твердих тілах при кріогенних температурах і створення електронних приладів на їх основі.
Мікроелектроніка базується на інтеграції дискретних елементів електронної техніки, при якій кожен елемент схеми формується окремо в напівпровідниковому кристалі. Взаємозв’язок фізики та мікроелектроніки прослідковується в тому, що мікроелектроніка передбачає принципово новий підхід, який дозволяє реалізувати певну функцію апаратури без застосування стандартних базових елементів, грунтуючись безпосередньо на фізичних явищах у твердому тілі. Розвиток сучасної мікроелектроніки характеризується розробленням великого числа типів інтегральних мікросхем, в першу чергу створенням великих і надвеликих інтегральних схем і мікропроцесорів, а також систем на одному кристалі. Саме завдяки цій розробці мікроелектроніка є основою в будь-яких сучасних технологій, без яких на сьогодні жоден з нас не може обійтися. Висновок:
Схожі презентації
Категорії