X Код для використання на сайті:
Ширина px

Скопіюйте цей код і вставте його на свій сайт

X Для завантаження презентації, скористайтесь соціальною кнопкою для рекомендації сервісу SvitPPT Завантажити собі цю презентацію

Презентація на тему:
Будова ПК

Завантажити презентацію

Будова ПК

Завантажити презентацію

Презентація по слайдам:

Слайд 1

БУДОВА КОМП`ЮТЕРА

Слайд 2

Склад сучасного настільного персонального комп'ютера: 1.Дисплей; 2.Системна плата; 3.Центральний процесор (Мікропроцесор); 4.Оперативна пам'ять; 5.Карти розширення; 6.Блок живлення; 7.Оптичний дисковод; 8.Постійна пам'ять (Твердий диск): 9.Клавіатура; 10.Миша комп'ютерна.

Слайд 3

Слайд 4

Слайд 5

Слайд 6

Розвиток архітектури системних плат Функціонально системну плату можна описати різним чином. Іноді така плата містить всю схему комп'ютера (одноплатні). В протилежність одноплатним, в шиноорієнтірованих комп'ютерах системна плата реалізує схему мінімальної конфігурації, решта функцій реалізується за допомогою численних додаткових плат. Всі компоненти з'єднуються шиною. У системній платі немає відеоадаптера, деяких видів пам'яті і засобів зв'язку з додатковими пристроями. Ці пристрої (плати розширення) додаються до системної плати шляхом приєднання до шини розширення, яка є частиною системної плати. Перша системна плата була розроблена фірмою IBM, і показана в серпні 1981 року (PC-1). У 1983 році з'явився комп'ютер зі збільшеною системною платою (PC-2). Максимум, що могла підтримувати PC-1 без використання плат расширенія — 64К пам'яті. PC-2 мала вже 256К, але найважливіша відмінність полягала в програмуванні двох плат. Системна плата PC-1 не могла без коректування підтримувати найбільш могутні пристрої розширення, такі, як твердий диск і покращені відеоадаптери.

Слайд 7

Комп'ютерна шина Комп'ютерна шина — це канал пересилки даних, що спільно використовується різними блоками системи. Інформація передається по шині у вигляді груп бітів. До складу шини для кожного біта слова може бути передбачена окрема лінія (паралельна шина), або всі біти слова можуть послідовно в часі використовувати одну лінію (послідовна шина). Першою системною шиною, розробленою для комп'ютерів PC/XT, в основі яких лежали мікропроцесори, була шина PC/XT-bus. Вона була 8-и розрядною, а її контролер забезпечував роботу на частоті мікропроцесора (4,77 мгц). З появою машин типа PC/AT, що використовували 16-и розрядні мікропроцесори 80286, а пізніше і 80386 (версія SX), була створена шина PC/AT-bus. У зв'язку із зростанням тактової частоти мікропроцесорів до 12-16 Мгц контролер виконував її ділення навпіл для забезпечення прийнятної тактової частоти роботи шини.

Слайд 8

ISA

Слайд 9

EISA

Слайд 10

PCL Роз'єми 32-розрядної PCI на материнській платі

Слайд 11

Роз'єми 64-розрядної PCI в Power Macintosh G4

Слайд 12

AGP

Слайд 13

Слайд 14

Виробники системних плат Більшу частину світового ринку системних плат держать під собою тайванські виробники (які втім активно переносять виробництво у континентальний Китай). П'ять найбільших постачальників плат — це Asus, Micro-Star (MSI), Gigabyte, Elitegroup, Intel. В класі серверних системних плат найбільшими виробниками є Intel та Supermicro. В районі 2000 року помітних виробників системних плат було більше, біля двох десятків. Але жорсткіші умови конкуренції змушують виробників другого ешелону або йти з ринку, або намагатися знайти для себе нішеву спеціалізацію.

Слайд 15

BIOS Батарейка BIOS

Слайд 16

Слайд 17

Старт BIOS Одразу після подачі живлення центральний процесор комп'ютера починає виконувати програму BIOS, яка міститься у відповідній мікросхемі. Власне, ця стадія стосується лише завантажувальної частини BIOS, яка називається Boot-блок. Програма завантажувального блоку обчислює контрольні суми BIOS й виходячи з цього приймає рішення про доцільність подальшої роботи у звичайному режимі. Позаяк у випадку невідповідності контрольних сум приймається рішення про пошкодження програмного коду BIOS. Відновлення BIOS При негараздах BIOS, що можуть виникнути в результаті яких-небудь дій користувача або збою апаратури, управління передається спеціальній процедурі, на яку покладено функцію відновлення — Crisis Recovery. Ця процедура покликана в аварійному порядку прочитати з дискети, інколи навіть з жорсткого диска, файл BIOS, а потім записати його в мікросхему замість пошкодженого коду, тим самим відновивши стан персональної платформи до нормального.

Слайд 18

Початкова стадія На цьому етапі виконується початкове тестування всіх вузлів та компонентів комп'ютера, яке називається POST (Power-On Self Test — самотестування після подачі живлення). Окрім цього, метою процедури POST є робота з програмними ресурсами персональної платформи: обчислення обсягу оперативної пам'яті, пошук та ініціалізація відео системи, послідовних та паралельних портів, накопичувачів на гнучких та жорстких дисках, додаткових пристроїв, що підключені до PCI та USB шин абощо. Етапи ініціалізації та перевірки працездатності відстежуються засобами діагностики BIOS. Для цього процедури POST при переході від одного до іншого пристрою щоразу посилають у діагностичний порт (Manufacturing Test Port) спеціальні сигнали, що називаються POST-кодами. Деякі з них дублюються відповідними звуковими сигналами. В разі, коли виникають помилки, завантаження комп'ютера припиняється до усунення несправності. Про характер несправності можна зробити висновки, судячи з останнього POST-коду або звукового сигналу. В своїй роботі процедури POST керуються налаштуванням BIOS, читаючи їх із CMOS-пам'яті[2] — особливого різновиду пам'яті, призначеного для зберігання апаратної конфігурації комп'ютера. Крім того, тут же знаходяться всі налаштування BIOS, які може змінювати користувач — характеристики оперативної пам'яті (таймінги), частота роботи процесора, параметрижорсткого диска і ін.

Слайд 19

Налаштування BIOS За допомогою спеціальної підпрограми CMOS Setup користувачу трапляється нагода вказати параметри і режими функціонування окремих компонентів комп'ютера. Щоб це зробити, досить натиснути одну з наступних клавіш або їх поєднання: Delete, Esc, Ctrl+Esc, Ctrl+Alt+Esc, Alt+F2 і ін. Комбінація клавіш для запуску CMOS Setup залежить від версії і виробника BIOS. Інколи інформація про відповідну клавішу або комбінацію клавіш виводиться на екрані. Існує декілька зарезервованих клавіш, що дозволяють виконувати наперед визначене (by default) налаштування BIOS. Такою для сучасних AMIBIOS та AwardBIOS є клавіша Insert, за допомогою якої можна вибрати найбільш стабільний набір параметрів BIOS без запуску програми CMOS Setup. Інші комбінації клавіш викликають процедури оновлення BIOS: дозволяють виконати перепрограмування мікросхеми BIOS новішою версією програмного коду тощо. Фінальна стадія На фінальній стадії виконується те, задля чого власне й розроблявся BIOS. В наперед заданий (один і той же для всіх персональних платформ) програмний сегмент записуються процедури обробки операцій введення та виведення даних. Це дозволяє операційній системі, коли вона перейме управління від BIOS, послуговуватись бібліотеками програм в оперативній пам'яті, що вже запопадливо розміщені там. Якби всі програми самостійно намагалися опікуватися периферійними пристроями та містили б в собі подібні інструкції, то вони працювали вельми не ефективно та займали б забагато місця. Окрім того, кожен новий пристрій потребував би повної модифікації існуючих програм. Щоб уникнути подібних проблем, велику частину роботи по обробці даних переклал

Слайд 20

Слайд 21

Відеокарта

Слайд 22

Слайд 23

Слайд 24

Центральний процесор

Слайд 25

Будова.Внутрішні спільно працюючі пристрої Моделі процесорів включають такі спільно працюючі пристрої: Пристрій керування (ПК). Здійснює координацію роботи всіх інших пристроїв, виконує функції керування пристроями, керує обчисленнями в комп'ютері.Арифметико-логічний пристрій (АЛП). Так називається пристрій для цілочислових операцій. Арифметичні операції, такі як додавання, множення і ділення, а також логічні операції (OR, AND, ASL, ROL і ін.) обробляються за допомогою АЛП. Ці операції складають переважну більшість програмних кодів у більшості програм. Всі операції в АЛП обробляються в регістрах — спеціально відведених чарухнках АЛП. У процесорі може бути декілька АЛП. Кожен здатний виконувати арифметичні або логічні операції незалежно від інших, що дозволяє виконувати декілька операцій одночасно. Арифметико-логічний пристрій виконує арифметичні і логічні дії. Логічні операції поділяються на дві прості операції: «Так» і «Ні» («1» і «0»). Звичайно, ці два пристрої виділяються суто умовно, конструктивно вони не розділені.AGU (Address Generation Unit) — пристрій генерації адрес. Це пристрій не менш важливий, ніж АЛП, тому що він відповідає за коректну адресацію при завантаженні або збереженні даних.Математичний співпроцесор (FPU). Процесор може містити декілька математичних співпроцесорів. Кожний з них здатний виконувати, щонайменше, одну операцію з плаваючою комою, незалежно від того, що роблять інші АЛП. Метод конвеєрної обробки даних дозволяє одному математичному співпроцесорові виконувати декілька операцій одночасно. Співпроцесор підтримує високоточні обчислення як цілочислені, так і з плаваючою комою і, крім того, містить набір корисних констант, що прискорюють обчислення. Співпроцесор працює паралельно з центральним процесором, забезпечуючи, таким чином, високу продуктивність.Дешифратор інструкцій (команд). Аналізує інструкції з метою виділення операндів і адрес, за якими розміщуються результати. Потім випливає повідомлення іншому незалежному пристроєві про те, що необхідно зробити для виконання інструкції. Дешифратор допускає виконання декількох інструкцій одночасно для завантаження усіх виконуючих пристроїв.

Слайд 26

Слайд 27

Пам'ять.Кеш-пам'ять. Особлива високошвидкісна пам'ять процесора. Кеш використовується як буфер для прискорення обміну даними між процесором і оперативною пам'яттю, а також для збереження копій інструкцій і даних, що недавно використовувалися процесором. Значення з кеш-пам'яті витягаються прямо, без звертання до основної пам'яті. Кеш першого рівня (L1 cache). Кеш-пам'ять, що знаходиться усередині процесора. Вона швидша за всі інші типи пам'яті, але менша за обсягом. Зберігає нещодавно використану інформацію, яка знову може бути використана при виконанні коротких програмних циклів. Кеш другого рівня (L2 cache). Також знаходиться усередині процесора. Інформація, що зберігається в ній, використовується рідше, ніж інформація, що зберігається в кеш-пам'яті першого рівня, проте обсяг пам'яті у ній більший. Також у наш час[Коли?] в процесорах використовується кеш третього рівня. Основна пам'ять. Набагато більша за обсягом, ніж кеш-пам'ять, і значно менш швидкодіюча. Регістри — це внутрішня пам'ять процесора. Являють собою ряд спеціалізованих додаткових комірок пам'яті, а також є внутрішніми носіями інформації мікропроцесора. Регістр є пристроєм тимчасового зберігання даних, числа або команди і використовується з метою полегшення арифметичних, логічних і пересильних операцій. Основним елементом регістра є електронна схема, яку називають тригером, що здатна зберігати одну двійкову цифру (розряд). Деякі важливі регістри мають свої назви, наприклад: суматор — регістр АЛП, що бере участь у виконанні кожної операції; лічильник команд — регістр УП, вміст якого відповідає адресі чергової виконуваної команди, служить для автоматичної вибірки програми з послідовних комірок пам'яті; регістр команд — регістр УП для збереження коду команди на період часу, що необхідний для її виконання. Частина його розрядів використовується для збереження коду операції, інші — для збереження кодів адрес операндів.

Завантажити презентацію

Презентації по предмету Інформатика