X Код для використання на сайті:
Ширина px

Скопіюйте цей код і вставте його на свій сайт

X Для завантаження презентації, скористайтесь соціальною кнопкою для рекомендації сервісу SvitPPT
Завантажити собі цю презентацію

Презентація на тему:
"Геометричні перетворення"

Презентація по слайдам:

Слайд 1

Симетрія відносно точки Нехай О – фіксована точка і Х – довільна точка площини (мал.2). Відкладемо на продовженні відрізка ОХ за точку О відрізок ОХ’, що дорівнює ОХ. Точка Х’ називається симетричною точці X відносно точки O. Точка, симетрична точці О, є сама точка О. Очевидно , точка симетрична точці X’, є точка Х.

Слайд 2

Що таке перетворення Мал.1 Мал.2 Зміст Якщо кожну точку даної фігури змістити яким-небудь чином, то ми дістанемо нову фігуру. Говорять, що ця фігура утворилася перетворенням даної. (мал.1) Перетворення однієї фігури в іншу називають рухом, якщо вона зберігає відстані між точками, тобто переводить будь-які дві точки X I Y у точки X' та Y' другої фігури так, що XY=X' Y' (мал.2)

Слайд 3

Симетрія відносно прямої Нехай g – фіксована пряма. Візьмемо довільну точку Х і опустимо перпендикуляр АХ на пряму g. На продовженні перпендикуляра за точку А, відкладемо відрізок AX’, що дорівнює відрізку AX. Точка X’ називається симетричною точці X відносно прямої g. Якщо точка Х лежить на прямій g, то симетрична їй точка є сама точка X. Очевидно, що точка симетрична точці X’, є точка Х.

Слайд 4

Перетворенням фігури F у фігуру F’, при якому кожна її точка X переходить у точку X’, симетричну відносно даної точки О, називається перетворенням симетрії відносно точки О. При цьому фігури F і F’ називаються симетричними відносно точки О. Якщо перетворення симетрії відносно точки О переводить фігуру F у себе, то вона називається центральносиметричною, а точка О називається центром симетрії. Симетрія відносно точки • F F′ O X′ X

Слайд 5

Симетрія відносно точки Теорема. Перетворення симетрії відносно точки є рухом Доведення: Нехай X і Y – дві довільні точки фігури F. Перетворення симетрії відносно точки О переводить їх у точки X’ і Y’. Розглянемо трикутники XOY і X’OY’. Ці трикутники рівні за першою ознакою рівності трикутників. У них кути при вершині О рівні, як вертикальні, а OX=OX’, OY=OY’ за означенням симетрії відносно точки О. З рівності трикутників випливає рівність сторін XY=X’Y’. А це означає, що симетрія відносно точки О є рух. Теорему доведено. Зміст

Слайд 6

Введемо на площині Декартові координати x, y. Перетворення фігури F при якому довільна точка (х; у) переходить у точку (х+а; у+b), де а і b одні й ті самі для всіх точок (х; у), називається паралельним перенесенням. Паралельне перенесення задається формулами: Паралельне перенесення

Слайд 7

Перетворення фігури F у фігуру F’, при якому кожна її точка Х переходить у точку X’, симетричну відносно даної прямої g, називається перетворенням симетрії відносно прямої g. При цьому фігури F і F’ називаються симетричними відносно прямої g. Симетрія відносно прямої Зміст g F F′ X X′

Слайд 8

Нехай F – дана фігура і О – фіксована точка. Через довільну точку Х фігури F проведемо промінь ОХ і відкладемо на ньому відрізок ОХ’, що дорівнює k·OX, де k – додатне число. Перетворенням фігури F, при якому кожна її точка Х переходить у точку Х’, побудовану таким способом, називається гомотетією відносно центра О. Число k називається коефіцієнтом гомотетії, фігури F і F’ називаються гомотетичними. ГОМОТЕТІЯ Зміст • O F F′ X X′

Слайд 9

Назва “паралельне перенесення” зумовлена тим, що при паралельному перенесенні точки зміщуються вздовж прямих (або прямих, які збігаються) на одну й ту саму відстань. Паралельне перенесення Зміст

Слайд 10

Бажаю успіхів Зміст

Слайд 11

Назва “паралельне перенесення” зумовлена тим, що при паралельному перенесенні точки зміщуються вздовж прямих (або прямих, які збігаються) на одну й ту саму відстань.

Слайд 12

Нехай F – дана фігура і О – фіксована точка. Через довільну точку Х фігури F проведемо промінь ОХ і відкладемо на ньому відрізок ОХ’, що дорівнює k·OX, де k – додатне число. Перетворенням фігури F, при якому кожна її точка Х переходить у точку Х’, побудовану таким способом, називається гомотетією відносно центра О. Число k називається коефіцієнтом гомотетії, фігури F і F’ називаються гомотетичними.

Слайд 13

Бажаю успіхів

Завантажити собі цю презентацію безкоштовно

Презентації по предмету Геометрія