X Код для використання на сайті:
Ширина px

Скопіюйте цей код і вставте його на свій сайт

X Для завантаження презентації, скористайтесь соціальною кнопкою для рекомендації сервісу SvitPPT Завантажити собі цю презентацію

Презентація на тему:
Кругообіг речовин та енергії як основний системоутворюючий фактор . Поняття біогеохімічного циклу та його ролі у функціонуванні та розвитку геоситеми

Завантажити презентацію

Кругообіг речовин та енергії як основний системоутворюючий фактор . Поняття біогеохімічного циклу та його ролі у функціонуванні та розвитку геоситеми

Завантажити презентацію

Презентація по слайдам:

Слайд 1

Кругообіг речовин та енергії як основний системоутворюючий фактор . Поняття біогеохімічного циклу та його ролі у функціонуванні та розвитку геоситеми .

Слайд 2

Антропогенний фактор – це вплив людини на навколишнє середовище в результаті своєї господарської діяльності. Впливає на організми, біогеоценози, ландшафти, біосферу (на відміну від біотичних або абіотичних чинників). Антропогенні фактори можуть впливати на цілі екосистеми і їх частини (організми, популяції, співтовариства, біоценози). Антропогенні фактори можуть опосередковуватися через вплив біотичних чинників (при знищенні деяких видів або, навпаки, при інтродукції видів) і абіотичних чинників (вплив на клімат, забруднення атмосфери, води і ін.). Результатом дії антропогенного фактора можуть бути порушення (різкі зміни), або антропогенні сукцесії. В даний час антропогенний фактор є важливим чинником порушення біосфери. Для обмеження впливу антропогенного фактора здійснюються екологічний моніторинг і екологічне нормування. Контроль і зниження інтенсивності впливу антропогенного фактора є одним з головних умов побудови суспільства сталого розвитку.

Слайд 3

До антропогенних факторів належить: забруднення; технічні перетворення й руйнування природних ландшафтів; вичерпання природних ресурсів; глобальні кліматичні впливи; Головні причини порушення кругообігу речовин у біосфері: По-перше, це досить сильне штучне прискорення процесів вивітрювання осадових і гранітних порід, пов´язане з видобуванням і переробкою корисних копалин, спалюванням вугілля, нафти, торфу, природного газу. В результаті в атмосфері збільшується вміст вуглекислого газу, оксидів сірки, через кислотні дощі зменшується рН ґрунту, що призводить до переходу багатьох елементів у розчинений стан. Деякі з них у великих концентраціях токсичні й небезпечні для живого (наприклад, важкі метали — мідь, цинк, свинець). Процеси кругообігу речовин у біологічному циклі вповільнюються — адже гинуть носії живої речовини. Та чим більше елементів переходить у розчин, тим більше їх вимивається у Світовий океан. Прискорені темпи загибелі біоти, вповільнені темпи повторного використання доступних мінеральних речовин, зростання швидкості їх вимивання спричиняють перезбагачення Світового океану біогенними елементами. Внаслідок цього частішають спалахи «цвітіння» океану мікроскопічними водоростями, які нерідко бувають токсичними й пригнічують розвиток консументів, котрі їх споживають. Так, порівняно з минулими століттями частота спалахів «цвітіння» в Світовому океані зросла в 50—130 разів! Усе це прискорює процеси вилучення з біосфери доступних біогенних речовин їх консервації в донних відкладах. По-друге, людина в процесі своєї господарської діяльності створює численні речовини (наприклад, пластмаси), які надалі не можуть бути ні використані продуцентами, ні розкладені до доступних мінеральних речовин редуцентами. Вони утворюють особливу групу антропогенних «осадових» порід — відходи нашої цивілізації, які археологи чомусь назвали «культурним шаром». Ці відходи зрештою будуть трансформовані в літосфері в граніти й потім у процесі вивітрювання знову стануть доступними для живої речовини, але відбудеться це в геологічних вимірах часу — через мільйони років. Тому є реальна загроза того, що доступні ресурси біосфери можуть бути перероблені на відходи швидше, ніж завершиться цикл геологічного кругообігу. Що в цьому разі станеться з біосферою (в тому числі й з людиною), передбачити нескладно.

Слайд 4

Вплив антропогенного фактора на якість підземних вод Основними джерелами забруднення води є стічні води комунального господарства, промислові, поверхневий стік з території міст, промислових підприємств і сільськогосподарських угідь. На стан водних ресурсів негативно впливають тваринницькі комплекси і підприємства по переробці тваринництва. Інтенсифікація сільського виробництва супроводжується швидким зростанням темпів використання мінеральних добрив та хімічних заходів захисту рослин від бур’янів,  хвороб, тощо. Внаслідок цього в оточуюче середовище надходить багато хімічних домішок, в тому числі пестицидів та гербіцидів, деякі з них є дуже стійкими до впливу зовнішніх факторів і протягом довгого часу зберігають свої якості. Особливо негативне те, що забрудненні добривами води з полів неможливо пропустити крізь очисні споруди.

Слайд 5

Біогеохімічні цикли – це процеси руху хімічних елементів,які відбуваються за участі живої речовини. Біогеохімічний цикл можна визначити як циклічне, поетапне перетворення речовин та зміну потоків енергії з просторовим масоперенесенням, яке здійснюється за рахунок сумісної дії біотичної та абіотичної трансформації речовин. Біогеохімічні цикли становлять собою циклічні переміщення біогенних елементів: вуглецю, кисню, водню, азоту, сірки, фосфору, кальцію, калію та ін. Від одного компоненту біосфери до інших. На певних етапах цього кругообігу вони входять до складу живої речовини. Рушійною силою всіх речовин в біогеохімічних циклах є потік сонячної енергії або частково енергії геологічних процесів Землі. Витрати енергії необхідні і для переміщення речовин у біогеохімічних циклах, і для подолання біогеохімічних бар'єрів. Такими бар'єрами на різних рівнях виступають мембрани клітин, самі особини рослин і тварин та інші матеріальні структури. Переміщення речовин у біогеохімічних циклах одночасно забезпечує життєдіяльність живих організмів. Головними оціночними параметрами ефективності та напрямку роботи біогеохімічного циклу є кількість біомаси, її елементарний склад та активне функціонування живих організмів.

Слайд 6

Просторове переміщення речовин у межах геосфер поділяється на п'ять основних типів: механічне перенесення (йде без зміни хімічного складу речовин ); водне (міґрація здійснюється за рахунок розчинення речовин та їх наступного переміщення у формі іонів або колоїдів). Це один із найважливіших видів переміщення речовин у біосфери; повітряне (перенесення речовин у формі газів, пилу або аерозолів із потоками повітря); біогенне (перенесення здійснюється за активної участі живих організмів); техногенне, що проявляється як результат господарської діяльності людини;

Слайд 7

Кругообіг речовин: кругообіг вуглецю; кругообіг азоту; кругообіг фосфору; кругообіг сірки; кругообіг води; кругообіг кисню; Хімічні елементи циркулюють у біосфері характерними шляхами із зовнішнього середовища в організм і знову в зовнішнє середовище. Процеси руху хімічних елементів, які відбуваються за участі живої речовини, називаються біогеохімічними циклами.Рух необхідних для життя елементів і неорганічних сполук можна назвати колообігом елементів живлення. Кількість речовини, що втягується в біосферні процеси залишається постійною протягом тривалого часу (цілих геологічних періодів) і таким чином в межах біосфери відбувається багатократний кругообіг речовин. Звичайно, внаслідок геологічних змін частина речовини біосфери може надовго виключатись з цього кругообігу. Наприклад, вапняки, кам'яне вугілля, нафта можуть на багато тисячоліть законсервуватись в земній корі. З іншої сторони підняття на поверхню глибинних шарів Землі створює умови для включення в біосферний кругообіг нових мас планети. Проте, взагалі за певний проміжок часу одна і та ж речовина біосфери здійснює багато циклів. Розрізняють два головних типи кругообігу: великий (геологічний) і малий (біологічний). Геологічний кругообіг відбувається повільно і живі організми тут відіграють другорядну роль.    В біологічному кругообігу речовини живі організми відіграють основну роль. До головних біогеохімічних циклів відносять цикли: С, О ,Н2О, N, P, S, біогенних катіонів.

Слайд 8

Кругообіг вуглецю Кругообіг вуглецю. Основним елементом живих організмів Землі є вуглець, який входить до складу органічних сполук – білків, жирів, вуглеводів. Джерела вуглецю в природі багаточисленні і різноманітні і лише СО2, що знаходиться в газоподібному чи розчиненому стані (в океані його в 50 разів більше, ніж в атмосфері) є тим джерелом С, який служить основою для переробки його в органічну речовину живих істот. Захоплений рослинами СО2 в процесі фотосинтезу перетворюється в цукри, а іншими процесами біосинтезу в протеїди, ліпіди, та ін. Ці речовини служать вуглецевим живленням тваринам і рослинам. З іншої сторони всі організми в процесі дихання виділяють в атмосферу вуглець з СО2. В певних умовах нагромаджуються відмерлі рослинні і тваринні рештки, що сповільнюють кругообіг вуглецю. Тварини – сапрофаги і сапрофітні мікроорганізми, що проживають в грунті, перетворюють ці рештки в гумус.    Іноді ланцюг буває короткий і неповний: ланцюг сапрофагів не функціонує внаслідок недостачі повітря або високої кислотності: органічні рештки нагромаджуються і утворюються торфові болота, в деяких з них з пишним покривом моху Sphagnum шар торфу може досягати 20 м і більше. Тут і припиняється кругообіг. У воді СО2 накопичується у формі СаСО3 хімічного або біогенного походження. Часто ці маси С залишаються поза кругообігом поки СаСО3 у вигляді гірських масивів не підніметься над поверхнею моря. З цього часу починається надходження С і Са в кругообіг. Воно здійснюється в процесі вилуговування вапняків під впливом лишайниково-злакових рослин.    Повний гіпотетичний кругообіг атмосферного вуглецю (СО2) може відбутись всього за 300 років.

Слайд 9

Кругообіг азоту Кругообіг азоту. Незважаючи на велику складність, цей кругообіг здійснюється досить швидко і безперешкодно. У повітрі міститься 78% азоту і воно служить одночасно і великим вмістищем і запобіжним клапаном системи, безперервно і в різних формах живить кругообіг азоту.    Крім, того електричні розряди синтезують із атмосферного азоту і кисню окисли азоту, а останні, попадаючи в грунт з дощовими водами, нагромаджують у формі селітри або HNO3 від 4 до 10 кг (N2 на 1 га/рік). Однак найбільша кількість цього елементу поступає в екологічну систему завдяки діяльності мікроорганізмів —фіксаторів N2. Цю функцію виконують бактерії (аеробні та анаеробні), які фіксують атмосферний азот. При їх відмиранні грунт збагачується ще на 25 кг N2/рік на 1 га. Великий ефект дають бактерії, що живуть в симбіозі з бобовими рослинами в бульбочках на коренях цих рослин. (Rhizobium) з допомогою молібдену, що служить каталізатором і особливої форми гемоглобіну (виняткове явище в рослинному світі) ці бактерії асимілюють велику кількість азоту.    Нітрати, що при цьому утворюються, дифундують в ризосферу (грунт, прилеглий до кореневої системи), крім того азот проникає в наземні органи рослини-хазяїна. Завдяки цьому бобові дуже багаті протеїдами і дуже поживні для травоїдних тварин. Річний запас N2 досягає в конюшині і люцерні 150-400 кг/га.    Інші бактерії, що фіксують атмосферний азот, також живуть в симбіозі з вищими рослинами. До них належать бактерії із сімейства Rubiaceae, що утворюють в тропіках на листках невеликі пухирці, які фіксують N2. І у водному середовищі фіксацію N2 із повітря здійснюють деякі синьо-зелені водорості, вони ж здійснюють і фотосинтез. Азот із різних джерел поступає до коренів у формі нітратів, останні транспортуються в листя, де використовуються для синтезування протеїнів. Ці протеїни служать основою азотного живлення тварин. Після смерті протеїни також використовуються, бо трупи є основою цілого ланцюга живлення організмів, які розкладають органіку і поступово переводять азот із органічних у мінеральні сполуки, тобто з нітратних форм у аміачні. Закінчується ланцюг діяльністю організмів, що утворюють аміак (NH3), який далі може ввійти в цикл нітрифікації. З другої сторони бактерії-денітрифікатори постійно віддають N в атмосферу, вони розкладають нітрати в N2, який звітрюється, тобто іон NO3 до N2. Але діють ці бактерії в грунтах і розкладають лише 20% загального N2 (тобто щорічно звітрюється 50-60 кг N2/1 га).    Азот може вийти з кругообігу, попавши в глибоководні океанічні осадки. Але перш ніж туди попасти, частина N2 буде захоплена організмами морського фітопланктону, в той же час він, як і фосфор ввійде в цикл живлення м'ясоїдних, що закінчується рибами, які служать поживою птахам і ссавцям. Ця частина N2 попадає із екскрементами птахів і ссавців на поверхню материків (гуано), хоча даний процес має значення в умовах сухого клімату. Вирішальне значення для обміну речовин мають сірка і фосфор.

Слайд 10

Кругообіг фосфору Кругообіг фосфору. Запаси фосфору, що доступні живим організ мам повністю зосереджені в літосфері. Найбільше фосфору в апати тах і фосфоритах. Неорганічний фосфор з порід земної кори втягує ться в циркуляції вилуговуванням і розчиненням і таким чином попа дає в екосистеми, поглинається рослинами, що синтезують за його участю різні органічні сполуки. Під час відмирання органіки фосфати разом з відходами повертаються в землю, де знову зазнають впливу мікроорганізмів і перетворюються в мінеральні ортофосфати, готови ми до споживання зеленими рослинами та іншими автотрофами.    У водні басейни фосфор приноситься текучими водами, що сприяють розвитку фітопланктону та інших організмів. У всіх водних екосистемах, як і на суші, фосфор трапляється у чотирьох формах, відповідно нерозчинних і розчинних: органічні фосфати, головним чином з мертвої органіки, органічні фосфати, мінеральні ортофосфати, органічні фосфати біомаси. Кругообіг фосфору в біосфері не замикається (Ф.Рамад, 1981). В океані дещо інакше. Це пов'язане з безперервною седиментацією органіки, зокрема збагачення фосфором трупів риб, рештки яких постійно накопичую ться на дні. Отже, фосфати, що відклались на великих глибинах, виключаються з кругообігу.    Якщо розглядати кругообіг фосфору за короткий період, то спостерігається, що він повністю не замкнутий. Відбувається часткове повернення фосфору на сушу, переважно з допомогою морських птахів, що живляться рибою. Перуанські поклади гуано свідчать про значний масштаб цього явища в деяких районах. Завдяки рибальству на сушу також поступає невелика кількість фосфору. Людина вносить в грунт фосфор у вигляді добрив.    Від стану кругообігу фосфору залежить кількість нітратів у воді і О2 в атмосфері.

Слайд 11

Кругообіг води Кругообіг води. Великий кругообіг води на поверхні земної кулі добре відомий: випаровування – атмосферна волога – опади – стік і т.д.    Рослинність виконує екрануючу функцію, перехоплюючи частину опадів ще до того, як вони досягнуть грунту і випаровує її в атмосферу. Вода, що проникає крізь крони дерев і стікає по стеблах, досягаючи грунту, просочується в нього або стікає. Частина інфільтраційної води затримується в грунті, причому тим сильніше, чим значніший грунтовий колоїдальний комплекс. Частина води, що промиває грунт на глибину 20-30 см може знову піднятись по капілярах на поверхню і випаруватись. Вода, всмоктана коренями рослин, транспірується в атмосферу листям.    Кількість води, що транспірується рослинами велика. Один га лісу випаровує за день від 25 до 50 тонн. Один га пшениці використовує за період розвитку 3750 т води, що складає 375 мм опадів, а продукує 12,5 сухої речовини.    В цілому рослини поглинають і транспірують біля 38% загальної кількості випадаючих опадів. Вода проходить через екосистему майже без втрат, лише 1% води, що випадає у вигляді опадів, йде на формування біомаси.

Слайд 12

Кругообіг сірки Кругообіг сірки. Переважна частина кругообігу відбувається у грунті і воді. Основним джерелом для живих організмів є сульфіди і сульфати (пірит – FeS2, халькопірит —CuFeS2, гіпс, ангідрит) та продукти розкладу органіки рослин. Більшість сульфатів добре розчиняється у воді і це полегшує доступ S в екосистеми. Поглинаючи сульфати з грунту, рослини виробляють сірковмісні амінокислоти (цистин, цистеїн). Відмираючи, органіка розкладається гетеротрофними бактеріями, які в кінці кінців виробляють H2S і з сульфопротеїнів, що містяться в грунті. З іншої сторони є бактерії, які здатні знову окисляти H2S до сульфатів, що збільшує запас S, доступної продуцентам. Таким чином, сірка знову повертається в грунт. Крім S органічного походження, рослини можуть вводити в цикл значну кількість S, що переноситься повітряними течіями і дощовою водою з промислових районів (дими). Це дає від 3 до 260 кг S на 1 га/рік.    Остання фаза кругообігу сірки повністю осадова, тобто вона випадає в осадок в анаеробних умовах при наявності Fe. Таким чином, процес закінчується повільним і поступовим накопиченням сірки в осадових породах. Утворення сполук S із Fe в літосфері супроводжується виділенням розчинних форм Р.

Слайд 13

Кругообіг кисню Другим за вмістом у атмосфері після азоту є кисень, що становить 20,95% її за обсягом. Набагато більшу його кількість знаходиться у зв'язаному стані в молекулах води, в солях, а також в оксидах та інших твердих породах земної кори, проте до цього величезного фонду кисню екосистема не має безпосереднього доступу. Час перенесення кисню в атмосфері складає близько 2500 років, якщо знехтувати обміном кисню між атмосферою та поверхневими водами. Механізм кругообігу повітря достатньо простий. Вважають, що молекула кисню (О2), що утворюється при фотосинтезі, отримує один свій атом від діоксиду вуглецю, а інший - від води; молекула кисню, споживана при диханні, віддає один свій атом діоксиду вуглецю, а інший - воді. Таким чином, кругообіг кисню зав'язаний на процеси фотосинтезу і дихання, з якими цікаво буде познайомитися.

Слайд 14

Енергетичний баланс біосфери Зміни енергетичного балансу біосфери, пов'язані з діяльністю людини.

Слайд 15

Енергія - це загальна кількісна міра руху та взаємодії усіх видів матерії. Відповідно до закону збереження енергії вона не зникає та не виникає з нічого, а тільки переходить з однієї форми до іншої. При кожному переході частина енергії перетворюється в тепло та втрачається в навколишньому просторі. Рослини та земна поверхня в середньому на рік поглинають 5x106 кДж/м2 енергії. Ця величина різна на різних широтах. Ефективність перенесення енергії в живій речовині досить низька. При її перенесенні від продуцентів до консументів першого порядку иона складає всього 10%, а при перенесенні від консументів першого порядку консументів другого порядку - 20%. Потік сонячної енергії, який надходить до біосфери, приводить в дію біохімічний кругообіг. Як зазначено, на відміну від кругообігів води та інших речовин потік енергії рухається в одному напрямку. Якщо падаючий потік сонячної енергії має радіальний (вертикальний) напрямок, то подальший його шлях має здебільшого горизонтальний (латеральний) характер. Великим енергетичним потенціалом відзначаються латеральні потоки повітряних мас (вітер), які, проникаючи в лісові чи лугові фітоценози, розхитують стовбури і стебла, розворушують листові пластинки чи квіти, піднімають і переносять насіння, охолоджують нагріте рослинне середовище, сприяючи тим самим подальшій трансформації збудженої механічної енергії в теплову чи хімічну. Латеральні снігові замети сприяють накопиченню вологи у полезахисних смугах та узліссях лісових екосистем, що згодом підвищить енергію біохімічних процесів. Латеральні потоки енергії приливів сприяють швидшому кругообігу мінеральних елементів живлення, переміщенню корму і відходів. Людство навчилося використовувати додаткову енергію природи, створивши сучасні технології відновлювальної енергії. Радіальні і латеральні потоки енергії, можуть виникати і внаслідок антропогенної діяльності. Передусім це радіальні потоки хімічних, металургійних, гірничо-переробних підприємств і теплових електростанцій, які виносять в атмосферу величезну кількість токсичних викидів. Далі вони вже латеральними повітряними потоками (часто трансконтинентальними) переносяться на великі віддалі і знову таки радіальними потоками опускаються на земну поверхню. Ці потоки механічної енергії є транспортом для хімічної енергії, яка проявляє себе в біологічних процесах конкретних наземних і водних біогеоценозів. Великі міста та індустріальні центри є потужними джерелами латеральних теплових потоків, які переміщуються від ядра міста до його околиць. Часто разом з тепловими потоками переміщуються латералями полютанти, здебільшого автотранспортні викиди, а також пил. У великих містах спостерігається розсіювання теплової енергії (ентропія), яка веде до ксерофілізації атмосферного і ґрунтового повітря та алкалізації (олужнення) міських ґрунтів. Ці латеральні теплові та полютанто-забруднюючі потоки енергії змінюють рослинний і тваринний світ природних ландшафтів, створюють нову живу речовину міст, яка поки що слабо вивчена. Антропогенна енергія (механічна, теплова, хімічна) може концентруватися в окремих природних екосистемах, підвищуючи їх продуктивність (агроекосистеми) або ж, при невмілому включенні цієї енергії в природний потік, призводити до їхньої деградації.

Слайд 16

Потік енергії на Земній кулі має три джерела: кінетична енергія; енергія земних надр; сонячна енергія; Потік енергії на Земній кулі має три джерела: -кінетична енергія оберту Землі та її супутника Місяця як космічних тіл. Вона проявляється в морських припливах, енергія яких недоступна живим організмам, але може використовуватися людиною; -енергія земних надр, яка підтримується ядерним розпадом урану та торію. Ця енергія виділяється у формі геотермічного тепла. У вулканічних районах вона використовується для опалення оранжерей та басейнів; -сонячна енергія, на базі якої здійснюється життєдіяльність в автотрофних організмів. На Сонці енергія виникає в результаті ядерних перетворень. Головне з них - це перетворення водню в гелій через дейтерій. Променева енергія Сонця проявляється в амплітуді довжини хвиль від 0,3 до 2,0 мкм. Доля ультрафіолетового випромінювання в ній невелика. Воно в основному затримується озоновим екраном планети. Притік енергії до зовнішньої поверхні атмосфери планети від Сонця порівняно постійний - це так звана сонячна постійна, яка дорівнює 1,93 кал/см2 за 1 хв. Вона відхиляється від середнього значення всього тільки на 0,1-0,2%. Але тривалих спостережень за величиною сонячної постійної поки що не велося і її багатовікові тенденції не відомі.

Слайд 17

Планетарний потік енергії За неофіційними даними, спеціалісти вважають, що протягом останнього мільярду років сонячна постійна не змінювалася. Всього до Землі доходить 10,5х106 кДж/м2 у рік променистої енергії. Але 40% її одразу відбивається у космічний простір, а 15% поглинається атмосферою: або перетворюється в тепло, або витрачається на випаровування води. В атмосфері в основному сонячну радіацію поглинає водяна пара. В океанах цю роль виконує рідина (вода), на суходолі - гірські породи та ґрунт. Велика частина радіації відбивається в атмосферу від поверхні льоду та снігу

Слайд 18

Основні напрямки потоку енергії на Землі Всю біосферу можна розцінювати як єдине природне утворення, що поглинає енергію з космічного простору та направляє її на внутрішню роботу. У біосфері енергія тільки переходить з однієї форми до іншої та розсіюється у вигляді тепла. Основними перетворювачами енергії в біосфері є живі організми. Вони перетворюють вільну променисту енергію в хімічно зв'язану, котра потім переходить від одних біосферних структур до інших

Завантажити презентацію

Презентації по предмету Географія